A nanotechnology-based new approach in the treatment of breast cancer: Biosynthesized silver nanoparticles using Cuminum cyminum L. seed extract

J Photochem Photobiol B. 2020 Jul:208:111902. doi: 10.1016/j.jphotobiol.2020.111902. Epub 2020 May 20.

Abstract

The present study reports the anticancer activities of Cuminum cyminum L. (Cumin) seed extract, chemically synthetized silver nanoparticles (AgNPs) and biosynthesized silver nanoparticles (Bio-AgNPs) from Cumin seeds on human breast adenocarcinoma cell line (MCF-7) and human breast adenocarcinoma metastatic cell line (AU565). The synthetized nanoparticles were characterized by dynamic light scattering (DLS), UV-visible spectroscopy (UV-Vis), X-ray diffraction (XRD), Fourier-transform infrared spectroscopy (FTIR) and Scanning electron microscopy (SEM). The cytotoxic and anticancer effects of AgNPs and Bio-AgNPs were determined by MTT assay. According to the cytotoxicity analysis, Bio-AgNPs appears to be less toxic against J774 macrophage cells than AgNPs since IC50 values were measured as 0.75 and 1.25 μg/ml for AgNPs and Bio-AgNPs, respectively. On the other hand, Bio-AgNPs demonstrated significant inhibitory effects on human breast cancer cells at non-toxic concentrations such as 0.25 and 0.5 μg/ml. However, at increased concentrations, the lethal effects of AgNPs on breast cancer cells were higher than Bio-AgNPs. When cytotoxic and anticancer characteristics of Cumin extract were investigated, it was established that it did not show any inhibitory effect on J774 cells, while killing the half of MCF-7 cells at investigated concentrations. Interestingly, Cumin extract gave rise to no inhibitory effects against AU565 cells. On the other hand, AgNPs and Bio-AgNPs exhibited considerable anticancer activities on both cell lines. The inhibition percentages of AgNPs on MCF-7 and AU565 cell lines were respectively evaluated as 95% and 97% at the highest concentrations applied (12.5 μg/ml). Similarly, we determined that 87.5% and 96% of MCF-7 and AU565 cells were respectively inhibited when they were exposed to the highest concentrations of Bio-AgNPs. Considering relatively toxic-free features of Bio-AgNPs prepared from Cuminum cyminum L. seed extracts, it can be thought that this formulation will be a pioneer in development of nanotechnology-based new anticancer drug for the treatment of breast cancer in near future.

Keywords: Anticancer activity; Biogenic synthesis; Bionanotechnology; Cuminum cyminum L.; Silver nanoparticles.

MeSH terms

  • Antineoplastic Agents / chemistry
  • Antineoplastic Agents / pharmacology
  • Breast Neoplasms / drug therapy
  • Cell Line, Tumor
  • Cell Survival / drug effects
  • Cuminum / chemistry*
  • Cuminum / metabolism
  • Female
  • Green Chemistry Technology
  • Humans
  • Metal Nanoparticles / chemistry*
  • Metal Nanoparticles / toxicity
  • Plant Extracts / chemistry*
  • Seeds / chemistry
  • Seeds / metabolism
  • Silver / chemistry*

Substances

  • Antineoplastic Agents
  • Plant Extracts
  • Silver