Remodeling of aligned fibrous extracellular matrix by encapsulated cells under mechanical stretching

Acta Biomater. 2020 Aug:112:202-212. doi: 10.1016/j.actbio.2020.05.027. Epub 2020 May 27.

Abstract

Extracellular matrix (ECM) remodeling is essential for the development and functions of connective tissues (e.g., heart, muscle and the periodontal ligament), and entails the highly anisotropic response of cells and their organized ECM molecules to mechanical stimulation. However, the nature of how cells remodel their surrounding ECM under mechanical stimulation remains elusive. Here, we encapsulated human periodontal ligament stem cells (hPDLSCs) within an aligned rat collagen scaffold labeled with fluorescein isothiocyanate (FITC) and applied mechanical stimulation on the scaffold using magnetic stretching. Through tracking the FITC-labeled rat collagen scaffold and the newly secreted human type I collagen, we studied the effect of magnetic stretching on the mechanism of aligned ECM remodeling by the encapsulated cells. We found that the aligned topography combined with magnetic stretching could significantly promote initial ECM degradation and new ECM secretion: expression of matrix metalloproteinases 1 and 9 is increased markedly, and the elastic modulus of the stretched scaffold (75 kPa) is significantly higher than that of the random scaffold (50 kPa). The data support a model whereby the cells remodel their surrounding ECM under continuous stretching through degradation and then secretion of new ECM to integrate with the aligned ECM and maintain tissue function. Our study offers a valuable basis for future optimized design of biomaterial scaffolds for clinical translation. STATEMENT OF SIGNIFICANCE: Extracellular matrix (ECM) remodeling is essential for the development and functions of connective tissues. However, the nature of how cells remodel their surrounding aligned ECM under mechanical stimulation remains elusive. Herein, we developed a method to reveal the remodeling of aligned rat collagen scaffold by the encapsulated human periodontal ligament stem cells (hPDLSCs) using fluorescence imaging. We found that the aligned topography combined with magnetic stretching could significantly promote initial ECM degradation and new ECM secretion: the expression of matrix metalloproteinase 1 and 9 are significantly higher, and the elastic modulus increases from 50 kPa to 75 kPa as compared to the random collagen scaffold encapsulating hPDLSCs. Our study holds great potential in optimization of bio-scaffold design for clinical translation.

Keywords: Extracellular matrix remodeling; biomaterial tracking; cell mechanical microenvironment; collagen scaffold; stem cells.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Animals
  • Collagen
  • Collagen Type I
  • Extracellular Matrix*
  • Periodontal Ligament
  • Rats
  • Tissue Engineering
  • Tissue Scaffolds*

Substances

  • Collagen Type I
  • Collagen