Evaluating feasibility of high resolution T1-perfusion MRI with whole brain coverage using compressed SENSE: Application to glioma grading

Eur J Radiol. 2020 Aug:129:109049. doi: 10.1016/j.ejrad.2020.109049. Epub 2020 May 11.

Abstract

Purpose: To evaluate the efficacy of optimized T1-Perfusion MRI protocol (protocol-2) with whole brain coverage and improved spatial resolution using Compressed-SENSE (CSENSE) to differentiate high-grade-glioma (HGG) and low-grade-glioma (LGG) and to compare it with the conventional protocol (protocol-1) with partial brain coverage used in our center.

Methods: This study included MRI data from 5 healthy volunteers, a phantom and 126 brain tumor patients. Current study had two parts: To analyze the effect of CSENSE on 3D-T1-weighted (W) fast-field-echo (FFE) images, T1-W, dual-PDT2-W turbo-spin-echo images and T1 maps, and to evaluate the performance of high resolution T1-Perfusion MRI protocol with whole brain coverage optimized using CSENSE. Coefficient-of-Variation (COV), Relative-Percentage-Error (RPE), Normalized-Mean-Squared-Error (NMSE) and qualitative scoring were used for the former study. Tracer-kinetic (Ktrans,ve,vp) and hemodynamic (rCBV,rCBF) parameters computed from both protocols were used to differentiate LGG and HGG.

Results: The image quality of all structural images was found to be of diagnostic quality till R = 4. NMSE in healthy T1-W-FFE images and COV in phantom images increased with-respect-to R and images provided optimum quality till R = 4. Structural images and maps exhibited artefacts from R = 6. All parameters in tumor tissue and hemodynamic parameters in healthy gray matter tissue computed from both protocols were not significantly different. Parameters computed from protocol-2 performed better in terms of glioma grading. For both protocols, rCBF performed least (AUC = 0.759 and 0.851) and combination of all parameters performed best (AUC = 0.890 and 0.964).

Conclusion: CSENSE (R = 4) can be used to improve the resolution and brain coverage for T1-Perfusion analysis used to differentiate gliomas.

Keywords: Compressed-SENSE; DCE-MRI; Glioma grading; T1-Perfusion MRI.

MeSH terms

  • Adolescent
  • Adult
  • Aged
  • Aged, 80 and over
  • Brain / diagnostic imaging
  • Brain / pathology
  • Brain Mapping / methods*
  • Brain Neoplasms / diagnostic imaging*
  • Brain Neoplasms / pathology*
  • Child
  • Feasibility Studies
  • Female
  • Glioma / diagnostic imaging*
  • Glioma / pathology*
  • Humans
  • Magnetic Resonance Imaging / methods*
  • Male
  • Middle Aged
  • Neoplasm Grading
  • Phantoms, Imaging
  • Prospective Studies
  • Retrospective Studies
  • Young Adult