Pre-Polymerization Enables Controllable Synthesis of Nanosheet-Based Porphyrin Polymers towards High-Performance Li-Ion Batteries

Chemistry. 2020 Aug 17;26(46):10433-10438. doi: 10.1002/chem.202001943. Epub 2020 Jul 20.

Abstract

The precise regulation of nucleation growth and assembly of polymers is still an intriguing goal but an enormous challenge. In this study, we proposed a pre-polymerization strategy to regulate the assembly and growth of polymers by facilely controlling the concentration of polymerization initiator, and thus obtained two kinds of different nanosheet-based porphyrin polymer materials using tetrakis-5,10,15,20-(4-aminophenyl) porphyrin (TAPP) as the precursor. Notably, due to the π-π stacking and doping of TAPP during the preparation process, the obtained PTAPP-nanocube material exhibits a high intrinsic bulk conductivity reaching 1.49×10-4 S m-1 . Profiting from the large π-conjugated structure of porphyrin units, closely stacked layer structure and excellent conductivity, the resultant porphyrin polymers, as electrode materials for lithium ion batteries, deliver high specific capacity (≈650 mAh g-1 at the current density of 100 mA g-1 ), excellent rate performance and long-cycle stability, which are among the best reports of porphyrin polymer-based electrode materials for lithium-ion batteries, to the best of our knowledge. Therefore, such a pre-polymerization approach would provide a new insight for the controllable synthesis of polymers towards custom-made architecture and function.

Keywords: lithium-ion batteries; nanosheets; porphyrin polymer; pre-polymerization; self-assembly.