Determinants of transcription factor regulatory range

Nat Commun. 2020 May 18;11(1):2472. doi: 10.1038/s41467-020-16106-x.

Abstract

Characterization of the genomic distances over which transcription factor (TF) binding influences gene expression is important for inferring target genes from TF chromatin immunoprecipitation followed by sequencing (ChIP-seq) data. Here we systematically examine the relationship between thousands of TF and histone modification ChIP-seq data sets with thousands of gene expression profiles. We develop a model for integrating these data, which reveals two classes of TFs with distinct ranges of regulatory influence, chromatin-binding preferences, and auto-regulatory properties. We find that the regulatory range of the same TF bound within different topologically associating domains (TADs) depend on intrinsic TAD properties such as local gene density and G/C content, but also on the TAD chromatin states. Our results suggest that considering TF type, binding distance to gene locus, as well as chromatin context is important in identifying implicated TFs from GWAS SNPs.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't

MeSH terms

  • Acetylation
  • Animals
  • Cell Line
  • Chromatin / metabolism
  • Gene Expression Regulation*
  • Genome-Wide Association Study
  • Histones / metabolism
  • Lysine / metabolism
  • Mice
  • Models, Genetic
  • Polymorphism, Single Nucleotide / genetics
  • Protein Binding / genetics
  • Quantitative Trait Loci / genetics
  • Transcription Factors / metabolism*
  • Transcription Initiation Site

Substances

  • Chromatin
  • Histones
  • Transcription Factors
  • Lysine