Visible-Light-Driven Photoswitching of Aggregated-Induced Emission-Active Diarylethenes for Super-Resolution Imaging

ACS Appl Mater Interfaces. 2020 Jun 17;12(24):27651-27662. doi: 10.1021/acsami.0c03122. Epub 2020 Jun 2.

Abstract

Photoswitchable fluorescent diarylethenes are promisingly widely applied in the fields of optical memory, all-optical transistors, bioimaging, and super-resolution imaging, and so on. However, they face the problems of fluorescence quenching in an aggregated/solid state, the inadequate fluorescence ON/OFF switching ratio, and the necessity of UV-light irradiation. Herein, we report a novel kind of high-performance diarylethenes with aggregated-induced emission (AIE) by conjugating two diarylethene groups on one AIE-gen (i.e., TPE-2DTE (blue-green fluorescent) and OTPE-2DTE (orange fluorescence)). Their open forms show enhanced fluorescence in the aggregated and solid states. The closed form of TPE-2DTE/OTPE-2DTE was effectively generated upon short-wavelength visible-light (400 nm-450 nm) irradiation, whose fluorescence was dramatically quenched by intra- and inter-molecular energy transfer. Remarkably, 405 nm purple irradiation gives fluorescence ON/OFF ratios of 1196:1 and 1983:1 for TPE-2DTE and OTPE-2DTE, respectively. The reverse process can be accomplished after another longer wavelength irradiation such as 621 nm and shows considerable fatigue resistance. Taking advantage of superior photoswitching properties under visible-light irradiation, TPE-2DTE and OTPE-2DTE were used for super-resolution imaging with a high resolution of sub 50 nm. This work offers guidance to design bright-emitting and high-performance visible-light-controlled diarylethene photoswitches for practical applications.

Keywords: AIE; diarylethene; fluorescence photoswitching; super-resolution imaging; visible light.