Sensitive and Stable Tin-Lead Hybrid Perovskite Photodetectors Enabled by Double-Sided Surface Passivation for Infrared Upconversion Detection

Small. 2020 Jul;16(26):e2001534. doi: 10.1002/smll.202001534. Epub 2020 May 17.

Abstract

Tin(Sn)-based perovskite is currently considered one of the most promising materials due to extending the absorption spectrum and reducing the use of lead (Pb). However, Sn2+ is easily oxidized to Sn4+ in atmosphere, causing more defects and degradation of perovskite materials. Herein, double-sided interface engineering is proposed, that is, Sn-Pb perovskite films are sandwiched between the phenethylammonium iodide (PEAI) in both the bottom and top sides. The larger organic cations of PEA+ are arranged into a perovskite surface lattice to form a 2D capping layer, which can effectively prevent the water and oxygen to destroy bulk perovskite. Meanwhile, the PEA+ can also passivate defects of iodide anions at the bottom of perovskite films, which is always present but rarely considered previously. Compared to one sided passivation, Sn-Pb hybrid perovskite photodetectors contribute a significant enhancement of performance and stability, yielding a broadband response of 300-1050 nm, a low dark current density of 1.25 × 10-3 mA cm-2 at -0.1 V, fast response speed of 35 ns, and stability beyond 240 h. Furthermore, the Sn-Pb broadband photodetectors are integrated in an infrared up-conversion system, converting near-infrared light into visible light. It is believed that a double-sided passivation method can provide new strategies to achieving high-performance perovskite photodetectors.

Keywords: double-sided passivation; infrared upconversion detection; perovskite photodetectors; tin-lead perovskites.