Variation of biogeochemical cycle of riverine dissolved inorganic carbon and silicon with the cascade damming

Environ Sci Pollut Res Int. 2020 Aug;27(23):28840-28852. doi: 10.1007/s11356-020-09174-5. Epub 2020 May 16.

Abstract

To investigate the variation of the biogeochemical cycle of riverine dissolved inorganic carbon (DIC) and silicon (DSi) with the cascade damming, the bicarbonate ([Formula: see text]), dissolved silicon (DSi), and other environmental factors within the cascade reservoirs of the lower reaches of Yalongjiang River, passing through the southeastern Qinghai-Tibet Plateau, were systematically analyzed by collecting water samples during the wet season and dry season from 2018 to 2019, respectively. The results showed that the lower ratio of DSi to[Formula: see text] (0.044 ± 0.001) was mainly controlled by the domination of carbonate mineral in the sedimentary rock of the Yalongjiang River drainage basin. The DSi:[Formula: see text] ratio was positively correlated with discharge (P < 0.05), and negatively correlated with the water retention time (P < 0.01) and chlorophyll a, implying that the variations of DSi:[Formula: see text] ratio were mainly determined by the rock chemical weathering processes and the hydrologic process outside the reservoirs and the biological processes within the cascade reservoirs. The phytoplankton photosynthetic process stoichiometrically assimilated DSi and [Formula: see text], resulted in 3.46 × 104 t·Si a-1 and 1.89 × 104 t·C a-1 sequestering in the cascade reservoirs, respectively. Compared with the situation of dam-free in the lower reaches of Yalongjiang River, the export flux of [Formula: see text] and DSi at the mouth of Yalongjiang River was reduced by 11.87% and 62.50%, respectively; the ratio of DSi:[Formula: see text] decreased by 36.01% for only building the Ertan dam and 53.15% for the cascade damming, respectively. The water renewal time prolonged from 45 to 126.6 days due to the regulation of the cascade reservoirs in the mainstream. Ultimately, a conceptual model on migration-transformation of DIC and DSi within the cascade reservoirs in the lower reaches of Yalongjiang River was established. These findings demonstrated that riverine cascade damming could extend the biogeochemical coupling cycle of DIC and DSi within the inland aquatic ecosystems and ensure the ecological environment security in the hot-dry valley.

Keywords: Bicarbonate; Biogeochemical cycles; Cascade reservoirs; Dissolved silica; Environmental factors.

MeSH terms

  • Carbon / analysis*
  • Chlorophyll A
  • Ecosystem
  • Environmental Monitoring
  • Rivers
  • Silicon*
  • Tibet

Substances

  • Carbon
  • Chlorophyll A
  • Silicon