Calibration and Cross-Validation of Accelerometery for Estimating Movement Skills in Children Aged 8-12 Years

Sensors (Basel). 2020 May 13;20(10):2776. doi: 10.3390/s20102776.

Abstract

(1) Background: This study sought to calibrate triaxial accelerometery, worn on both wrists, waist and both ankles, during children's physical activity (PA), with particular attention to object control motor skills performed at a fast and slow cadence, and to cross-validate the accelerometer cut-points derived from the calibration using an independent dataset. (2) Methods: Twenty boys (10.1 ±1.5 years) undertook seven, five-minute bouts of activity lying supine, standing, running (4.5kmph-1) instep passing a football (fast and slow cadence), dribbling a football (fast and slow cadence), whilst wearing five GENEActiv accelerometers on their non-dominant and dominant wrists and ankles and waist. VO2 was assessed concurrently using indirect calorimetry. ROC curve analysis was used to generate cut-points representing sedentary, light and moderate PA. The cut-points were then cross-validated using independent data from 30 children (9.4 ± 1.4 years), who had undertaken similar activities whilst wearing accelerometers and being assessed for VO2. (3) Results: GENEActiv monitors were able to discriminate sedentary activity to an excellent level irrespective of wear location. For moderate PA, discrimination of activity was considered good for monitors placed on the dominant wrist, waist, non-dominant and dominant ankles but fair for the non-dominant wrist. Applying the cut-points to the cross-validation sample indicated that cut-points validated in the calibration were able to successfully discriminate sedentary behaviour and moderate PA to an excellent standard and light PA to a fair standard. (4) Conclusions: Cut-points derived from this calibration demonstrate an excellent ability to discriminate children's sedentary behaviour and moderate intensity PA comprising motor skill activity.

Keywords: energy expenditure; indirect calorimetry; motor competence; motor development; sensors; wearables.

MeSH terms

  • Accelerometry*
  • Calibration
  • Calorimetry, Indirect
  • Child
  • Exercise*
  • Humans
  • Male
  • Motor Skills*
  • Sedentary Behavior
  • Wrist