Study on Mechanical Properties of Hybrid Polypropylene-Steel Fiber RPC and Computational Method of Fiber Content

Materials (Basel). 2020 May 13;13(10):2243. doi: 10.3390/ma13102243.

Abstract

On the basis of determining the optimum content of polypropylene fiber reactive powder concrete (RPC), the influence of different steel fiber content on the compressive strength and splitting tensile strength of hybrid polypropylene-steel fiber RPC was studied. The particle morphology and pore parameters of hybrid polypropylene-steel fiber RPC were analyzed by combining scanning electron microscope (SEM) with image-pro plus (IPP) software. The results showed that the RPC ductility can be further improved on the basis of polypropylene fiber RPC, the compressive strength and splitting tensile strength of polypropylene fiber. The optimum content of hybrid polypropylene-steel fiber RPC is 0.15% polypropylene fiber, 1.75% steel fiber. Hybrid polypropylene-steel fiber RPC is mainly composed of particles with small particle size. The particle area ratio first increased and decreased with the increase of steel fiber content, and the maximum steel fiber content is 1.75%. The pore area ratio first decreased and increased with the increase of steel fiber content, and the pore area ratio is the smallest when the steel fiber content is 1.75%. The calculation methods of polypropylene fiber content and steel fiber content and 28-day RPC compressive strength and splitting tensile strength are proposed to select polypropylene fiber content and steel fiber content flexibly according to different engineering requirements, which can provide important guidance for the popularization and application of RPC in practical engineering.

Keywords: compressive strength; polypropylene fiber; reactive powder concrete; splitting tensile strength; steel fiber.