Optimization of nitrogen source supply for enhanced biosynthesis and quality of poly(3-hydroxybutyrate-co-3-hydroxyvalerate) by extremely halophilic archaeon Haloferax mediterranei

Microbiologyopen. 2020 Aug;9(8):e1055. doi: 10.1002/mbo3.1055. Epub 2020 May 15.

Abstract

The extreme halophilic archaeon, Haloferax mediterranei can accumulate polyhydroxyalkanoate (PHA) from different renewable resources. To enhance the biosynthesis and quality of PHA, H. mediterranei cultivation media was optimized at different C/N ratios using glucose as the main carbon source. Three sets of media (yeast extract [YE], NH4 Cl and combination of YE and NH4 Cl) were prepared at different nitrogen concentrations to achieve C/N ratios of 9, 20, and 35, respectively. The media containing YE (organic nitrogen source) produced a higher growth rate of H. mediterranei than NH4 Cl (inorganic source) at all tested C/N ratios. The highest PHA accumulation (18.4% PHA/cell dry mass) was achieved in a media that combined YE with NH4 Cl at a C/N ratio of 20. Analysis of the produced polymers revealed the production of poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBHV) with different 3-hydroxyvalerate (3HV) content. The polymers produced from YE and the combined media have greater 3HV content (10 mol%) than those polymers recovered from NH4 Cl (1.5 mol%). Resultingly, PHBHV from YE and the combined media displayed reduced melting points at 144°C. The nitrogen type/concentration was found to also have an impact on the molecular weights and polydispersity indices of the produced biopolymers. Furthermore, the tensile strengths were found to vary with the best tensile strength (14.4 MPa) being recorded for the polymer recovered from YE at C/N = 9. Interestingly, the tensile strength of PHBHV was significantly higher than petroleum-based polyethylene (13.5 MPa), making it a much more suitable bioplastic for industrial application.

Keywords: Haloferax mediterranei; carbon-to-nitrogen ratio; poly(3-hydroxybutyrate-co-3-hydroxyvalerate); polyhydroxyalkanoates; yeast extract.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Ammonium Chloride / metabolism*
  • Cell Extracts
  • Fermentation
  • Haloferax mediterranei / growth & development
  • Haloferax mediterranei / metabolism*
  • Nitrogen / metabolism
  • Organic Chemicals / metabolism*
  • Polyesters / metabolism*
  • Polyhydroxyalkanoates / metabolism
  • Water Pollution, Chemical / analysis*

Substances

  • Cell Extracts
  • Organic Chemicals
  • Polyesters
  • Polyhydroxyalkanoates
  • poly(3-hydroxybutyrate)-co-(3-hydroxyvalerate)
  • Ammonium Chloride
  • Nitrogen