All-fiber bandwidth tunable ultra-broadband mode converters based on long-period fiber gratings and helical long-period gratings

Opt Express. 2020 Apr 13;28(8):11990-12000. doi: 10.1364/OE.389471.

Abstract

We demonstrated the fabrication of bandwidth tunable ultra-broadband mode converters based on CO2-laser inscribed long-period fiber gratings (LPFGs) and helical long-period gratings (HLPGs) in a two-mode fiber (TMF). The simulation and experimental results show that there is a dual-resonance coupling from LP01 to LP11 core mode at the dispersion turning point. The mode converters based on the TMF-LPFG and TMF-HLPG provide a 10-dB bandwidth of ∼300 nm and ∼297 nm, respectively, which covers O + E+S + C band. The 1st order orbital angular momentum (OAM) mode based on TMF-LPFG was generated by adjusting the polarization controllers (PCs), while the 1st order OAM mode can be generated directly by the TMF-HLPG. When the twist rate is varied from -36 rad/m ∼ 36 rad/m, the tunable range of the 10-dB bandwidth is ∼52 nm and ∼91 nm for the LPFG and HLPG mode converters, respectively. The ultra-broadband mode converter can be adopted as a bandwidth tunable mode converter, which can be applied in ultra-broadband mode-division-multiplexing transmission systems and optical fiber sensing systems based on few-mode fibers.