One-Pot Domino Carbonylation Protocol for Aromatic Diimides toward n-Type Organic Semiconductors

Angew Chem Int Ed Engl. 2020 Aug 10;59(33):14024-14028. doi: 10.1002/anie.202003179. Epub 2020 Jun 8.

Abstract

Aromatic diimides are one of the most important chromophores in the construction of n-type organic semiconductors, which lag far behind their p-type counterpart but are necessary for ambipolar transistors, p-n junctions and organic complementary circuits. Herein, we establish a facile one-pot domino synthetic protocol for aromatic diimides via palladium-catalyzed carbonylation of tetrabromo aromatic precursors. Taking tetrabromocorannulene (TBrCor) and tetrabromo-2,7-di-tert-butylpyrene (TBrPy) as the typical examples, we obtained diimide derivatives in yields of about 50 %, one order of magnitude higher than that of the traditional multi-step diimidization. As demonstrated in the case of corannulene diimide, the efficient diimidization not only allows the LUMO levels to be lowered significantly but also provides an ordered and closer packing structures, opening up possibilities to the development of n-type semiconducting materials based on a variety of aromatic systems.

Keywords: aromatic diimides; carbonylation; domino synthesis; organic semiconductors; palladium catalysis.