Assessment of the impact of natural and anthropogenic activities on the groundwater chemistry in Baotou City (North China) using geochemical equilibrium and multivariate statistical techniques

Environ Sci Pollut Res Int. 2020 Aug;27(22):27651-27662. doi: 10.1007/s11356-020-09117-0. Epub 2020 May 11.

Abstract

The rapid development of urbanization and agriculture poses serious impacts on groundwater in arid and semi-arid areas, which typically have high groundwater depletion rates. In this study, chemical and isotopic analyses combined with different data interpretation methods (diagrams, bivariate analyses, principal component analysis (PCA), and hierarchical cluster analysis (HCA)) were used to identify the major factors controlling groundwater chemistry in an arid and semi-arid region of North China. Sixty-four groundwater samples (35 from unconfined aquifer, 29 from confined aquifer) were collected in Baotou City, North China, and 17 chemical variables were detected for each sample. The complex hydrochemical types in unconfined groundwater (e.g., HCO3-Ca·Mg, HCO3·Cl-Na·Mg, SO4-Na·Mg, and Cl·SO4-Na types) may be related to anthropogenic activities, while the main hydrochemical types in confined groundwater are HCO3-Ca·Mg, HCO3-Na·Mg, HCO3·Cl-Na·Ca, SO4·HCO3-Na·Mg, and Cl·SO4-Na types. Three component models for unconfined and confined groundwater were revealed using PCA, which explained approximately 79.69% and 80.68% of the data variance, respectively, providing a deeper insight into groundwater composition controlled by geochemistry and anthropogenic activities. Three clusters were yielded from HCA. The factors and identified clusters were verified with hydrochemical investigations. Among the natural factors, the main hydrochemical processes involve the dissolution of various minerals (halite, gypsum, feldspar, fluorite, mirabilite, biotite, dolomite, and calcite), cation exchange, evaporation, and mixing. The anthropogenic factors include domestic sewage intrusion and agricultural activities, which are most likely to lead to further declines in groundwater quality. These findings may be useful for improving groundwater resource management for sustainable development in arid and semi-arid areas.

Keywords: Anthropogenic activities; Baotou City; Groundwater chemistry; Multivariate statistical analysis; Natural factors; Saturation index.

MeSH terms

  • China
  • Cities
  • Environmental Monitoring
  • Groundwater*
  • Water Pollutants, Chemical / analysis*

Substances

  • Water Pollutants, Chemical