NiF2 Nanorod Arrays for Supercapattery Applications

ACS Omega. 2020 Mar 11;5(17):9768-9774. doi: 10.1021/acsomega.9b04219. eCollection 2020 May 5.

Abstract

A electrode for energy storage cells is possible directly on Ni foam, using a simple reduction process to form NiF2 nanorod arrays (NA). We demonstrate NiF2@Ni NA for a symmetric electrochemical supercapattery electrode. With an areal specific capacitance of 51 F cm-2 at 0.25 mA cm-2 current density and 94% cycling stability, a NiF2@Ni electrode can exhibit supercapattery behavior, a combination of supercapacitor and battery-like redox. The symmetric electrochemical supercapattery delivers 31 W h m-2 energy density and 797 W m-2 power density with 83% retention in a 1 M KOH electrolyte, constituting a step toward manufacturing a laboratory-scale energy storage device based on metal halides. Producing self-grown hierarchically porous nanostructured electrodes on three-dimensional metal foams by displacement reactions may be useful for other metal halides as electrodes for supercapacitors, supercapatteries, and lithium-ion batteries.