Ultrahigh-Frequency Surface Acoustic Wave Sensors with Giant Mass-Loading Effects on Electrodes

ACS Sens. 2020 Jun 26;5(6):1657-1664. doi: 10.1021/acssensors.0c00259. Epub 2020 May 19.

Abstract

Surface acoustic wave (SAW) devices are widely used for physical, chemical, and biological sensing applications, and their sensing mechanisms are generally based on frequency changes due to mass-loading effects at the acoustic wave propagation area between two interdigitated transducers (IDTs). In this paper, a new sensing mechanism has been proposed based on a significantly enhanced mass-loading effect generated directly on Au IDT electrodes, which enables significantly enhanced sensitivity, compared with that of conventional SAW devices. The fabricated ultrahigh-frequency SAW devices show a significant mass-loading effect on the electrodes. When the Au-electrode thickness increased from 12 to 25 nm, the Rayleigh mode resonant frequency decreased from 7.77 to 5.93 GHz, while that of the higher longitudinal leaky SAW decreased from 11.87 to 9.83 GHz. The corresponding mass sensitivity of 7309 MHz·mm2·μg-1 (Rayleigh mode) is ∼8.9 × 1011 times larger than that of a conventional quartz crystal balance (with a frequency of 5 MHz) and ∼1000 times higher than that of conventional SAW devices (with a frequency of 978 MHz). Trinitrotoluene concentration as low as 4.4 × 10-9 M (mol·L-1) can be detected using the fabricated SAW sensor, proving its giant mass-loading effect and ultrahigh sensitivity.

Keywords: IDT; mass-loading effect; sensors; surface acoustic wave; ultrahigh frequency.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Acoustics*
  • Electrodes
  • Quartz
  • Sound*
  • Transducers

Substances

  • Quartz