Massively parallel CRISPRi assays reveal concealed thermodynamic determinants of dCas12a binding

Proc Natl Acad Sci U S A. 2020 May 26;117(21):11274-11282. doi: 10.1073/pnas.1918685117. Epub 2020 May 6.

Abstract

The versatility of CRISPR-Cas endonucleases as a tool for biomedical research has led to diverse applications in gene editing, programmable transcriptional control, and nucleic acid detection. Most CRISPR-Cas systems, however, suffer from off-target effects and unpredictable nonspecific binding that negatively impact their reliability and broader applicability. To better evaluate the impact of mismatches on DNA target recognition and binding, we develop a massively parallel CRISPR interference (CRISPRi) assay to measure the binding energy between tens of thousands of CRISPR RNA (crRNA) and target DNA sequences. By developing a general thermodynamic model of CRISPR-Cas binding dynamics, our results unravel a comprehensive map of the energetic landscape of nuclease-dead Cas12a (dCas12a) from Francisella novicida as it inspects and binds to its DNA target. Our results reveal concealed thermodynamic factors affecting dCas12a DNA binding, which should guide the design and optimization of crRNA that limits off-target effects, including the crucial role of an extended protospacer adjacent motif (PAM) sequence and the impact of the specific base composition of crRNA-DNA mismatches. Our generalizable approach should also provide a mechanistic understanding of target recognition and DNA binding when applied to other CRISPR-Cas systems.

Keywords: CRISPR; Escherichia coli; molecular biophysics; statistical mechanics; transcriptional regulation.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't

MeSH terms

  • Bacterial Proteins / chemistry
  • Bacterial Proteins / genetics
  • Bacterial Proteins / metabolism*
  • CRISPR-Associated Proteins / chemistry
  • CRISPR-Associated Proteins / genetics
  • CRISPR-Associated Proteins / metabolism*
  • Clustered Regularly Interspaced Short Palindromic Repeats*
  • Endodeoxyribonucleases / chemistry
  • Endodeoxyribonucleases / genetics
  • Endodeoxyribonucleases / metabolism*
  • Escherichia coli / genetics
  • Francisella
  • High-Throughput Screening Assays / methods
  • RNA Interference
  • RNA, Guide, CRISPR-Cas Systems
  • Thermodynamics

Substances

  • Bacterial Proteins
  • CRISPR-Associated Proteins
  • RNA, Guide, CRISPR-Cas Systems
  • Cas12a protein
  • Endodeoxyribonucleases