The Effect of Proprioceptive Training on Directional Dynamic Stabilization

J Sport Rehabil. 2020 May 5;30(2):248-254. doi: 10.1123/jsr.2019-0346.

Abstract

Objectives: Significant loss of playing time and the impact of treatment costs due to lower limb injury in football demonstrates a need for improved protocols for injury risk reduction. The aim of the present study is to assess the effect of a proprioceptive training program on the lower limb dynamic stability of elite footballers.

Methods: A total of 16 elite premier league footballers were randomly allocated by matched pair design to a 8-week proprioception training group (group A, n = 8) or nontraining group (group B, n = 8), to determine the effect of this training over a 16-week period. Group A completed 8 weeks of bilateral proprioceptive training, 5 times per week for 10 minutes. The Biodex Stability System measures of overall stability index, anterior-posterior (A-P), and medial-lateral stability (M-L) at levels 8-6-4-1 were taken for both groups at baseline, 4, 8, and 16 weeks. Main effects of time, level of stability, and direction of stability were determined, with comparisons of effect made between the 2 groups.

Results: The training group displayed significant differences for multidirectional stability at week 8 (P ≤ .05). The A-P stability within the training group displayed significant differences between baseline measures and 16 weeks (P > .05), with significant increases in scores displayed for M-L and A-P stability between weeks 8 and 16 (P ≤ .05), representing a detraining effect. No significant differences were detected at any time point for the nontraining group (P > .05).

Conclusions: Proprioceptive training over 8 weeks has a positive effect on all directions of stability. Greater declines in A-P stability were evident at 16 weeks when compared with M-L and overall stability index. Consideration must be given to the increased stability scores presented pretesting for A-P when compared with M-L. Findings of this work present implications for training design.

Keywords: dynamic stability; injury risk; proprioception; soccer.

MeSH terms

  • Adolescent
  • Ankle Joint / physiology
  • Exercise Therapy / methods*
  • Healthy Volunteers
  • Humans
  • Postural Balance / physiology*
  • Proprioception / physiology*
  • Soccer / physiology*