Synergistic Effect of Salinized Quinone for Entrapment of Polysulfides for High-Performance Li-S Batteries

ACS Appl Mater Interfaces. 2020 May 27;12(21):23867-23873. doi: 10.1021/acsami.0c03621. Epub 2020 May 15.

Abstract

Lithium-sulfur (Li-S) batteries have attracted considerable attention in the energy storage field due to their high theoretical energy density and low price. However, the dissolution of polysulfides and the "shuttle effect" lead to serious capacity degradation, which greatly hinders the industrial application of Li-S batteries. Herein, we propose a bifunctional quinone-type salt to anchor polysulfides and suppress their dissolution for use in high-performance Li-S batteries. We find that the tetrahydroxy-1,4-benzoquinone disodium salt dimer (TBS-dimer) does not dissolve in organic electrolytes and can be generated at 400 °C. The abundant reactive keto groups and double bonds result in the TBS-dimers having numerous "hot spots" for capturing sulfur (TBS/S-400) in the three-dimensional space of the molecule. The insolubility and abundant active sites of the organic salt remarkably suppress the dissolution of lithium polysulfides. As a result, the TBS/S-400 composite delivers a capacity decay rate of only 0.023% per cycle over 600 cycles at 2 C. The use of organic salts to effectively suppress the dissolution of lithium polysulfides opens a new avenue for the practical applications of high-performance Li-S batteries.

Keywords: Li−S batteries; covalent bonding; organic salts; quinone derivative; shuttle effect.