Novel Phenothiazine-Bridged Porphyrin-(Hetero)aryl dyads: Synthesis, Optical Properties, In Vitro Cytotoxicity and Staining of Human Ovarian Tumor Cell Lines

Int J Mol Sci. 2020 Apr 30;21(9):3178. doi: 10.3390/ijms21093178.

Abstract

We report here the synthetic procedure applied for the preparation of new AB3-type and trans-A2B2 type meso-halogenophenothiazinyl-phenyl-porphyrin derivatives, their metal core complexation and their peripheral modification using Suzuki-Miyaura cross coupling reactions with various (hetero)aryl (phenothiazinyl, 7-formyl-phenothiazinyl, (9-carbazolyl)-phenyl and 4-formyl-phenyl, phenyl) boronic acid derivatives. The meso-phenothiazinyl-phenyl-porphyrin (MPP) dyes family was thus extended by a series of novel phenothiazine-bridged porphyrin-(hetero)aryl dyads characterized by UV-Vis absorption/emission properties typical to the porphyrin chromophore, slightly modulated by increasing the size of peripheral substituents. Three phenothiazine-bridged porphyrin-heteroaryl dyads with fluorescence emission above 655 nm were selected as fluorophores in red spectral region for applications in cellular staining of human ovarian tumors. In vitro experiments of cell metabolic activity displayed a moderate toxicity on human ovarian tumor cell lines (OVCAR-3, cisplatin-sensitive A2780 and cisplatin-resistant A2780cis respectively). Visualization of the stained living cells was performed both by fluorescence microscopy imaging and by fluorescence lifetime imaging under two photon excitation (TPE-FLIM), confirming their cellular uptake and the capability of staining the cell nucleus.

Keywords: TPE-FLIM; UV–Vis spectroscopy; carbazole; cytotoxicity; fluorescence imaging; meso-aryl-porphyrin; metal-porphyrin; phenothiazine.

MeSH terms

  • Antineoplastic Agents / chemical synthesis*
  • Antineoplastic Agents / chemistry
  • Antineoplastic Agents / pharmacology*
  • Apoptosis / drug effects
  • Cell Line, Tumor
  • Female
  • Humans
  • Microscopy, Fluorescence
  • Phenothiazines / chemistry*
  • Porphyrins / chemistry*

Substances

  • Antineoplastic Agents
  • Phenothiazines
  • Porphyrins
  • phenothiazine