Carbon sequestration potential and soil characteristics of various land use systems in arid region

J Environ Manage. 2020 Jun 15:264:110254. doi: 10.1016/j.jenvman.2020.110254. Epub 2020 Apr 1.

Abstract

Soils contain one of the largest carbon (C) pools in the biosphere with the greatest potential of C sequestration to mitigate climate change impacts. The present study aimed at comparing C sequestration potential of various land use systems including forestlands, croplands, agroforests, and orchards in the arid region of Pakistan. Soil samples from the layers of 0-20, 20-40, 40-60, and 60-80 cm depths were collected and analysed for soil physico-chemical properties namely texture, pH, EC, NPK-soil, organic matter (SOM), and soil organic C (SOC). Additionally, the above and below ground plant biomass and C contents were estimated. Results revealed that the highest C sequestration potential (64.54 Mg ha-1) was in the above ground biomass of forest land and the lowest (33.50 Mg ha-1) in cropland. The below ground plant biomass at 0-20 cm soil depth was 14.09, 12.38, 11.78, 11.76, and 10.92 Mg ha-1 for forest land, mango orchards, agroforests, citrus orchards and cropland, respectively. The respective values in case of total C content were, 6.84, 6.79, 6.10, 5.69 Mg ha-1. Irrespective to the soil depth, below ground biomass and total C followed the order: forest land > mango orchard > citrus orchard > agroforests > crop lands. It is concluded that the forest land have greater potential for C sequestration than the other land use systems studied in the arid region of Pakistan. Therefore, in order to cope up with climate change disasters in Pakistan the massive reforestation project - named the Billion Tree Tsunami of the Government of Pakistan will prove beneficial.

Keywords: Land use systems; Soil organic carbon; Soil physicochemical attributes.

MeSH terms

  • Agriculture
  • Carbon
  • Carbon Sequestration*
  • China
  • Forests
  • Pakistan
  • Soil*

Substances

  • Soil
  • Carbon