Global REACH 2018: The Effect of an Expiratory Resistance Mask with Dead Space on Sleep and Acute Mountain Sickness During Acute Exposure to Hypobaric Hypoxia

High Alt Med Biol. 2020 Sep;21(3):297-302. doi: 10.1089/ham.2019.0124. Epub 2020 May 4.

Abstract

Carr, Jay, Rachel Stone, Courtney Tymko, Kaitlyn Tymko, Geoff B. Coombs, Ryan L. Hoiland, Connor A. Howe, Michael M. Tymko, Philip N. Ainslie, and Alexander Patrician. Global REACH 2018: the effect of an expiratory resistance mask with dead space on sleep and acute mountain sickness during acute exposure to hypobaric hypoxia. High Alt Med Biol. 21:297-302, 2020. We hypothesized that an expiratory resistance and dead space (ER/DS) mask, a version of which was previously shown to partially alleviate sleep-disordered breathing and headache severity during acute normobaric hypoxia (Patrician et al.), would exhibit similar results in conditions of hypobaric hypoxia. In a randomized, single-blinded, sham-controlled, and sex-matched design, 31 healthy lowlanders rapidly (6-8 hours) ascended from sea level to 4300 m (Cerro de Pasco, Peru) and slept with either an ER/DS mask (n = 15) or sham mask (n = 16). Sleep was assessed (via WatchPAT) and questionnaires collected before sleep and upon waking the morning after. There was no difference in apnea-hypopnea index (AHI) between the ER/DS (77 ± 20 events/h) or sham mask (84 ± 27 events/h; p = 0.57). In addition, there was no alleviation of headache scores, improvement in sleep quality, or acute mountain sickness symptom severity. Both the sham and ER/DS masks were poorly tolerated (∼50% subject noncompliance in both groups). These findings highlight the importance and necessity of field-testing and demonstrate that more testing is needed before ER/DS devices, such as these, can be recommended for prophylactic benefits at high altitude.

Keywords: altitude illness; dead space; expiratory resistance; hypoxia; sleep.

MeSH terms

  • Altitude
  • Altitude Sickness*
  • Humans
  • Hypoxia
  • Peru
  • Sleep