Pooled In Vitro and In Vivo CRISPR-Cas9 Screening Identifies Tumor Suppressors in Human Colon Organoids

Cell Stem Cell. 2020 May 7;26(5):782-792.e7. doi: 10.1016/j.stem.2020.04.003. Epub 2020 Apr 28.

Abstract

Colorectal cancer (CRC) is characterized by prominent genetic and phenotypic heterogeneity between patients. To facilitate high-throughput genetic testing and functional identification of tumor drivers, we developed a platform for pooled CRISPR-Cas9 screening in human colon organoids. Using transforming growth factor β (TGF-β) resistance as a paradigm to establish sensitivity and scalability in vitro, we identified optimal conditions and strict guide RNA (gRNA) requirements for screening in 3D organoids. We then screened a pan-cancer tumor suppressor gene (TSG) library in pre-malignant organoids with APC-/-;KRASG12D mutations, which were xenografted to study clonal advantages in context of a complex tumor microenvironment. We identified TGFBR2 as the most prevalent TSG, followed by known and previously uncharacterized mediators of CRC growth. gRNAs were validated in a secondary screen using unique molecular identifiers (UMIs) to adjust for clonal drift and to distinguish clone size and abundance. Together, these findings highlight a powerful organoid-based platform for pooled CRISPR-Cas9 screening for patient-specific functional genomics.

Keywords: clonal drift; colorectal cancer; human colonic stem cells; lentiviral barcoding; non-homologous end joining; patient-derived organoids; pooled-barcoded CRISPR-Cas9 screening; tumor microenvironment; tumor suppressor genes; unique molecular identifiers.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • CRISPR-Cas Systems* / genetics
  • Clustered Regularly Interspaced Short Palindromic Repeats / genetics
  • Colon
  • Genes, Tumor Suppressor
  • Humans
  • Organoids*