Viral Hepatitis and Iron Dysregulation: Molecular Pathways and the Role of Lactoferrin

Molecules. 2020 Apr 24;25(8):1997. doi: 10.3390/molecules25081997.

Abstract

The liver is a frontline immune site specifically designed to check and detect potential pathogens from the bloodstream to maintain a general state of immune hyporesponsiveness. One of the main functions of the liver is the regulation of iron homeostasis. The liver detects changes in systemic iron requirements and can regulate its concentration. Pathological states lead to the dysregulation of iron homeostasis which, in turn, can promote infectious and inflammatory processes. In this context, hepatic viruses deviate hepatocytes' iron metabolism in order to better replicate. Indeed, some viruses are able to alter the expression of iron-related proteins or exploit host receptors to enter inside host cells. Lactoferrin (Lf), a multifunctional iron-binding glycoprotein belonging to the innate immunity, is endowed with potent antiviral activity, mainly related to its ability to block viral entry into host cells by interacting with viral and/or cell surface receptors. Moreover, Lf can act as an iron scavenger by both direct iron-chelation or the modulation of the main iron-related proteins. In this review, the complex interplay between viral hepatitis, iron homeostasis, and inflammation as well as the role of Lf are outlined.

Keywords: ferroportin; hepatitis; hepcidin; iron; iron homeostasis; iron proteins; lactoferrin; lactoferrin receptors; liver; viral infections.

Publication types

  • Review

MeSH terms

  • Animals
  • Biological Transport
  • Disease Resistance
  • Disease Susceptibility* / immunology
  • Hepatitis, Viral, Human / etiology*
  • Hepatitis, Viral, Human / metabolism*
  • Homeostasis
  • Host-Pathogen Interactions / immunology
  • Humans
  • Iron / metabolism*
  • Iron-Binding Proteins / metabolism
  • Lactoferrin / metabolism
  • Liver / immunology
  • Liver / metabolism
  • Liver / pathology
  • Liver / virology
  • Organ Specificity / immunology
  • Protein Binding
  • Receptors, Cell Surface / metabolism

Substances

  • Iron-Binding Proteins
  • Receptors, Cell Surface
  • lactoferrin receptors
  • Iron
  • Lactoferrin