Status of arsenic accumulation in agricultural soils across China (1985-2016)

Environ Res. 2020 Jul:186:109525. doi: 10.1016/j.envres.2020.109525. Epub 2020 Apr 15.

Abstract

Based on 1677 published studies, 1648 sites across China collected from 1985 to 2016 were used to research the concentrations of arsenic in agricultural soils. In order to understand the status of arsenic pollution in agricultural soils in China over the past three decades, and to learn about the arsenic stocks in agricultural soils in various regions, and compared the relationship with annual arsenic emissions in China, and finally evaluated the potential ecological risks and human health risks. The median arsenic concentration in the surface agricultural soils of China was 10.40 mg Kg-1, and it ranged from 0.4 mg Kg-1 to 175.8 mg Kg-1. The inventory of arsenic in Chinese agricultural surface soils was estimated to be 3.71 × 106 t. In this study, the arsenic concentrations were found to be higher in Central, South, and Southwest China than those in other regions. The trend of arsenic pollution in agricultural soils has gradually increased over the past three decades. However, the growth rate of arsenic concentrations pollution in farmlands agricultural in China slowed during 2012-2016. The ecological risk index and geoaccumulation index revealed that arsenic in Chinese agricultural soil poses a low risk to the ecosystem. For human health assessment, the dietary pathway was the main pathway of exposure to arsenic in farmland soil of China. However, children's soil intake also contributed 34.48% to the exposure to arsenic, owing to their behavior. This study can provide a reference for the management of arsenic agricultural pollution in farmland soils in China.

Keywords: Agricultural soil; Arsenic; China; Risk assessment; Temporal and spatial variation.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Agriculture
  • Arsenic* / analysis
  • Child
  • China
  • Ecosystem
  • Environmental Monitoring
  • Humans
  • Metals, Heavy* / analysis
  • Risk Assessment
  • Soil
  • Soil Pollutants* / analysis

Substances

  • Metals, Heavy
  • Soil
  • Soil Pollutants
  • Arsenic