KTi2 (PO4 )3 Electrode with a Long Cycling Stability for Potassium-Ion Batteries

Small. 2020 May;16(20):e2001090. doi: 10.1002/smll.202001090. Epub 2020 Apr 24.

Abstract

In this work, rhombohedral KTi2 (PO4 )3 is introduced to investigate the related theoretical, structural, and electrochemical properties in K cells. The suggested KTi2 (PO4 )3 modified by electro-conducting carbon brings about a flat voltage profile at ≈1.6 V, providing a large capacity of 126 mAh (g-phosphate)-1 , corresponding to 98.5% of the theoretical capacity, with 89% capacity retention for 500 cycles. Structural analyses using electrochemical performance measurements, first-principles calculations, ex situ X-ray absorption spectroscopy, and operando X-ray diffraction provide new insights into the reaction mechanism controlling the (de)intercalation of potassium ions into the host KTi2 (PO4 )3 structure. It is observed that a biphasic redox process by Ti4+/3+ occurs upon discharge, whereas a single-phase reaction followed by a biphasic process occurs upon charge. Along with the structural refinement of the electrochemically reduced K3 Ti2 (PO4 )3 phase, these new findings provide insight into the reaction mechanism in Na superionic conductor (NASICON)-type KTi2 (PO4 )3 . The present approach can also be extended to the investigation of other NASICON-type materials for potassium-ion batteries.

Keywords: KTi2(PO4)3; first-principles calculations; insertion; potassium-ion batteries.