Examination of the relationship between viscoelastic properties and the invasion of ovarian cancer cells by atomic force microscopy

Beilstein J Nanotechnol. 2020 Apr 6:11:568-582. doi: 10.3762/bjnano.11.45. eCollection 2020.

Abstract

The mechanical properties of cells could serve as an indicator for disease progression and early cancer diagnosis. This study utilized atomic force microscopy (AFM) to measure the viscoelastic properties of ovarian cancer cells and then examined the association with the invasion of ovarian cancer at the level of living single cells. Elasticity and viscosity of the ovarian cancer cells OVCAR-3 and HO-8910 are significantly lower than those of the human ovarian surface epithelial cell (HOSEpiC) control. Further examination found a dramatic increase of migration/invasion and an obvious decease of microfilament density in OVCAR-3 and HO-8910 cells. Also, there was a significant relationship between viscoelastic and biological properties among these cells. In addition, the elasticity was significantly increased in OVCAR-3 and HO-8910 cells after the treatment with the anticancer compound echinomycin (Ech), while no obvious change was found in HOSEpiC cells after Ech treatment. Interestingly, Ech seemed to have no effect on the viscosity of the cells. Ech significantly inhibited the migration/invasion and significantly increased the microfilament density in OVCAR-3 and HO-8910 cells, which was significantly related with the elasticity of the cells. An increase of elasticity and a decrease of invasion were found in OVCAR-3 and HO-8910 cells after Ech treatment. Together, this study clearly demonstrated the association of viscoelastic properties with the invasion of ovarian cancer cells and shed a light on the biomechanical changes for early diagnosis of tumor transformation and progression at single-cell level.

Keywords: atomic force microscopy (AFM); cancer invasion; cancer migration; ovarian cancer cells; viscoelasticity.

Grants and funding

This work was supported by the National Key Basic Research Program of China (973 project) under grant no. 2015CB352006, the National Natural Science Foundation of China under grant no. 61335011, the Program for Changjiang Scholars and Innovative Research Team in University under grant no. IRT_15R10, the scientific research innovation team construction program of Fujian Normal University under grant no. IRTL1702, Special Funds of the Central Government Guiding Local Science and Technology Development under grant no. 2017L3009, and the Natural Science Foundation of Fujian Province under grant nos. 2018J01814 and 2018J05102, the Fujian Province Educational Project A (JAT170127) and the Health and Family Planning Scientific Research Personnel Training Project of Fujian Province under grant no. 2018-ZQN-45.