Low-cost, ultracompact handheld optical coherence tomography probe for in vivo oral maxillofacial tissue imaging

J Biomed Opt. 2020 Apr;25(4):1-13. doi: 10.1117/1.JBO.25.4.046003.

Abstract

Significance: Optical coherence tomography (OCT) has proven useful for detecting various oral maxillofacial abnormalities. To apply it to clinical applications including biopsy guidance and routine screening, a handheld imaging probe is indispensable. OCT probes reported for oral maxillofacial imaging were either based on a bulky galvanometric mirror pair (not compact or long enough) or a distal-end microelectromechanical systems (MEMS) scanner (raised safety concerns), or adapted from fiber-optic catheters (ill-suited for oral cavity geometry).

Aim: To develop a handheld probe featuring great compactness and excellent maneuverability for oral maxillofacial tissue imaging.

Approach: A dual-axis MEMS scanner was deployed at the proximal end of the probe and the scanned beam was relayed to the distal end through a 4f configuration. Such design provides both a perfect dual-axis telecentric scan and excellent compactness.

Results: A handheld probe with a rigid part 70 mm in length and 7 mm in diameter and weighing 25 g in total was demonstrated through both ex vivo and in vivo experiments, including structural visualization of various oral maxillofacial tissues and monitoring the recovery process of an oral mucosa canker sore.

Conclusions: The proposed probe exhibits excellent maneuverability and imaging performance showing great potential in clinical applications.

Keywords: handheld probe; low cost; optical coherence tomography; oral maxillofacial tissue; ultracompact.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Equipment Design
  • Micro-Electrical-Mechanical Systems*
  • Tomography, Optical Coherence*