Viscoelasticity of reward and control systems in adolescent risk taking

Neuroimage. 2020 Jul 15:215:116850. doi: 10.1016/j.neuroimage.2020.116850. Epub 2020 Apr 13.

Abstract

Heightened risk-taking tendencies during adolescence have been hypothesized to be attributable to physiological differences of maturation in key brain regions. The socioemotional system (e.g., nucleus accumbens), which is instrumental in reward response, shows a relatively earlier development trajectory than the cognitive control system (e.g., medial prefrontal cortex), which regulates impulse response. This developmental imbalance between heightened reward seeking and immature cognitive control potentially makes adolescents more susceptible to engaging in risky activities. Here, we assess brain structure in the socioemotional and cognitive control systems through viscoelastic stiffness measured with magnetic resonance elastography (MRE) and volumetry, as well as risk-taking tendencies measured using two experimental tasks in 40 adolescents (mean age ​= ​13.4 years old). MRE measures of regional brain stiffness reflect brain health and development via myelin content and glial matrix makeup, and have been shown to be highly sensitive to cognitive processes as compared to measures of regional brain volume and diffusion weighted imaging metrics. We find here that the viscoelastic and volumetric differences between the nucleus accumbens and the prefrontal cortex are correlated with increased risk-taking behavior in adolescents. These differences in development between the two brain systems can be used as an indicator of those adolescents who are more prone to real world risky activities and a useful measure for characterizing response to intervention.

Keywords: Adolescent; Brain stiffness; Magnetic resonance elastography; Reward seeking; Risk taking; Viscoelasticity.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, U.S. Gov't, Non-P.H.S.

MeSH terms

  • Adolescent
  • Adolescent Behavior / physiology
  • Adolescent Behavior / psychology*
  • Brain / diagnostic imaging*
  • Brain / physiology
  • Child
  • Elasticity Imaging Techniques / methods*
  • Female
  • Humans
  • Male
  • Photic Stimulation / methods
  • Reward*
  • Risk-Taking*