Genetic Network between Leaf Senescence and Plant Immunity: Crucial Regulatory Nodes and New Insights

Plants (Basel). 2020 Apr 13;9(4):495. doi: 10.3390/plants9040495.

Abstract

Leaf senescence is an essential physiological process that is accompanied by the remobilization of nutrients from senescent leaves to young leaves or other developing organs. Although leaf senescence is a genetically programmed process, it can be induced by a wide variety of biotic and abiotic factors. Accumulating studies demonstrate that senescence-associated transcription factors (Sen-TFs) play key regulatory roles in controlling the initiation and progression of leaf senescence process. Interestingly, recent functional studies also reveal that a number of Sen-TFs function as positive or negative regulators of plant immunity. Moreover, the plant hormone salicylic acid (SA) and reactive oxygen species (ROS) have been demonstrated to be key signaling molecules in regulating leaf senescence and plant immunity, suggesting that these two processes share similar or common regulatory networks. However, the interactions between leaf senescence and plant immunity did not attract sufficient attention to plant scientists. Here, we review the regulatory roles of SA and ROS in biotic and abiotic stresses, as well as the cross-talks between SA/ROS and other hormones in leaf senescence and plant immunity, summarize the transcriptional controls of Sen-TFs on SA and ROS signal pathways, and analyze the cross-regulation between senescence and immunity through a broad literature survey. In-depth understandings of the cross-regulatory mechanisms between leaf senescence and plant immunity will facilitate the cultivation of high-yield and disease-resistant crops through a molecular breeding strategy.

Keywords: Sen-TF; cross-regulation; hormone; leaf senescence; plant immunity.

Publication types

  • Review