Compact Ho:YLF-pumped ZnGeP2-based optical parametric amplifiers tunable in the molecular fingerprint regime

Opt Lett. 2020 Apr 15;45(8):2255-2258. doi: 10.1364/OL.389535.

Abstract

We report on a compact mid-infrared laser architecture, comprising a chain of $ {\rm ZnGeP}_2 $ZnGeP2-based optical parametric amplifiers (OPAs), which afford a higher energy yield ($ \mathbin{\lower.3ex\hbox{$\buildrel \lt \over{\smash{\scriptstyle\sim}\vphantom{_x}}$}} 60\;\unicode{x00B5} {\rm J} $∼x<60µJ at 1 kHz) compared to most conventional OPA gain media transparent in the 2-8-µm wavelength range. Specifically, our OPA scheme allows ready tunability in the molecular fingerprint regime and is tailored for strong-field excitation and coherent control of both stretch and bend (or torsional) vibrational modes in molecules. The OPAs are pumped and directly seeded (via supercontinuum generation) by a 2-µm, 3-ps Ho:YLF regenerative amplifier. The compressibility of the OPA output is demonstrated by a representative measurement of the near-Gaussian temporal profile of a dispersion-compensated 105-fs idler pulse at a central wavelength of 5.1 µm, corresponding to ${\sim}6 $∼6 optical cycles. Detailed numerical simulations closely corroborate the experimental measurements, providing a benchmark and a platform to further explore the parameter space for future design, optimization, and implementation of high-energy, ultrafast, mid-infrared laser schemes.