High Verdet constant of Te20As30Se50 glass in the mid-infrared

Opt Lett. 2020 Apr 15;45(8):2183-2186. doi: 10.1364/OL.390236.

Abstract

Magneto-optical properties of tellurium-arsenic-selenium glass (${{\rm Te}_{20}}{{\rm As}_{30}}{{\rm Se}_{50}}$Te20As30Se50) were measured and analyzed. A Verdet constant of 15.18 rad/T/m at 1950 nm with the figure of merit of more than 8.72 rad/T, which is the highest value reported in glass materials at this wavelength, was measured. Compared to other chalcogenide glasses, such as ${{\rm Ge}_{10}}{{\rm Se}_{90}}$Ge10Se90 and ${{\rm Ge}_{25}}{{\rm As}_{15}}{{\rm S}_{60}}$Ge25As15S60, ${{\rm Te}_{20}}{{\rm As}_{30}}{{\rm Se}_{50}}$Te20As30Se50 glass exhibits higher Verdet constants, broader mid-infrared transparency window, and longer infrared absorption edge, making it a very promising material to fabricate magneto-optical devices for mid-infrared applications.