Stress-induced Interaction of Skin Immune Cells, Hormones, and Neurotransmitters

Clin Ther. 2020 May;42(5):757-770. doi: 10.1016/j.clinthera.2020.03.008. Epub 2020 Apr 7.

Abstract

Purpose: Although scientific articles mention the impact of psychological stress on skin diseases, few review the latest research on factors involved in this correlation. The skin actively responds to psychological stress, with involvement of skin immune cells, hormones, neurotransmitters. Skin immune cells actively regulate tissue inflammation with their proinflammatory and anti-inflammatory effects. Stress-induced skin reactions primarily include cytokine secretion (e.g. interleukin-6, interleukin-1, interferon-γ) and activation of skins peripheral corticotropin-releasing hormone (CRH)-proopiomelanocortin (POMC)-adrenocorticotropic hormone (ACTH)-corticosteroids axis, which leads to acute/chronic secretion of corticosteroids in the skin.

Methods: This narrative review presents the current knowledge and latest findings regarding the impact of psychological stress on skin diseases, including information concerning psychoneuroimmune factors in stress-induced skin responses. Recent articles published in English available through the PubMed database and other prominent literature are discussed.

Findings: Stress mediators, including cortisol, ACTH, and CRH from hypothalamus-pituitary-adrenal axis activation, induce various skin immune responses. Skin cells themselves can secrete these hormones and participate in skin inflammation. Thus, the local skin CRH-POMC-ACTH-corticosteroids axis plays a prominent role in stress-induced responses. Also, keratinocytes and fibroblasts produce hypothalamic and pituitary signal peptides and express receptors for them (CRH with receptors and POMC degradation peptides with melanocortin receptors), which allows them to respond to CRH by activating the POMC gene, which is then followed by ACTH and subsequently corticosteroids excretion. In addition, keratinocytes can express receptors for neurotransmitters (e.g. adrenaline, noradrenaline, dopamine, histamine, acetylcholine), neurotrophins, and neuropeptides (e.g. substance P, nerve growth factor), which are important in linking psychoneuroimmunologic mechanisms.

Implications: Psychoneuroimmunology provides an understanding that the skin is target and source of stress mediators. This locally expressed complex stress-induced network has been confirmed as active in many skin diseases (e.g. vulgar psoriasis, atopic dermatitis, chronic urticaria, human papillomavirus infections/warts, hair loss, acne). Skin reactions to stress and its influence on skin diseases may have implications for disease severity and exacerbation frequency, given the effect of locally secreted corticosteroids and other mediators that affect skin integrity, inflammation, and healing potential. Studies have also shown that introducing psychiatric treatment (drugs or psychotherapeutic methods) can have positive effects on dermatologic diseases influenced by psychological stress exposure. We hope this review provides clinicians and scientists with more complete background for further research in this field of skin psychoneuroimmunology.

Keywords: Hormones; Immune cells; Neurotransmitters; Psychological stress; Psychoneuroimmunology; Stress.

Publication types

  • Review

MeSH terms

  • Animals
  • Hormones / metabolism*
  • Humans
  • Neurotransmitter Agents / metabolism*
  • Skin / immunology*
  • Skin / metabolism*
  • Skin Diseases / immunology
  • Skin Diseases / metabolism
  • Stress, Psychological / immunology*
  • Stress, Psychological / metabolism*

Substances

  • Hormones
  • Neurotransmitter Agents