Neurosteroids as Selective Inhibitors of Glycine Receptor Activity: Structure-Activity Relationship Study on Endogenous Androstanes and Androstenes

Front Mol Neurosci. 2020 Mar 20:13:44. doi: 10.3389/fnmol.2020.00044. eCollection 2020.

Abstract

The ability of androstane and androstene neurosteroids with modifications at C-17, C-5, and C-3 (compounds 1-9) to influence the functional activity of inhibitory glycine and γ-aminobutyric acid (GABA) receptors was estimated. The glycine- and GABA-induced chloride current (I Gly and I GABA) were measured in isolated pyramidal neurons of the rat hippocampus and isolated rat cerebellar Purkinje cells, correspondingly, using the patch-clamp technique. Our results demonstrate that all the nine neurosteroids display similar biological activity, namely, they strongly inhibited I Gly and weakly inhibited I GABA. The threshold concentration of neurosteroids inducing effects on I Gly was 0.1 μM, and for effects on I GABA was 10-50 μM. Moreover, our compounds accelerated desensitization of the I Gly with the IC50 values varying from 0.12 to 0.49 μM and decreased the peak amplitude with IC50 values varying from 16 to 22 μM. Interestingly, our study revealed that only compounds 4 (epiandrosterone) and 8 (dehydroepiandrosterone) were able to cause a significant change in I GABA in 10 μM concentration. Moreover, compounds 3 (testosterone), 5 (epitestosterone), 6 (dihydroandrostenedione), and 9 (etiocholanedione) did not modulate I GABA up to the concentration of 50 μM. Thus, we conclude that compounds 3, 5, 6, and 9 may be identified as selective modulators of I Gly. Our results offer new avenues of investigation in the field of drug-like selective modulators of I Gly.

Keywords: GABA receptor; androstane; androstene; glycine receptor; neurosteroid; structure-activity relationship.