Blend electrospinning of dye-functionalized chitosan and poly(ε-caprolactone): towards biocompatible pH-sensors

J Mater Chem B. 2016 Jul 14;4(26):4507-4516. doi: 10.1039/c6tb00639f. Epub 2016 Jun 2.

Abstract

Fast-response and easy-to-visualize colorimetric nanofibrous sensors show great potential for visual and continuous control of external stimuli. This makes them applicable in many fields, including wound management, where nanofibers serve as an optimal support material. In this paper, fast responding and user-friendly biocompatible, halochromic nanofibrous sensors are successfully fabricated by incorporating the halochromic dyes Methyl Red and Rose Bengal inside a chitosan/poly(ε-caprolactone) nanofibrous matrix. The commonly applied dye-doping technique frequently suffers from dye-leaching, which not only reduces the sensor's sensitivity over time but can also induce adverse effects. Therefore, in this work, dye-immobilization is accomplished by covalent dye-modification of chitosan before blend electrospinning. It is shown that efficient dye-immobilization with minimal dye-leaching is achieved within the biomedical relevant pH-region, without significantly affecting the halochromic behavior of the dyes. This is in contrast to the commonly applied dye-doping technique and other dye-immobilization strategies stated in literature. Moreover, the nanofibers show high and reproducible pH-sensitivity by providing an instantaneous color change in response to change in pH in aqueous medium and when exposed to acidic or basic gases. The results stated within this work are of particular interest for natural (bio)polymers for which covalent modification combined with electrospinning provides a universal method for versatile dye-functionalization of large area nanofibrous membranes with proper dye-immobilization.