Impact of Hydrogen Bonds Limited Dipolar Disorder in High-k Polymer Gate Dielectric on Charge Carrier Transport in OFET

Polymers (Basel). 2020 Apr 5;12(4):826. doi: 10.3390/polym12040826.

Abstract

The paper contributes to the characterization and understanding the mutual interactions of the polar polymer gate dielectric and organic semiconductor in organic field effect transistors (OFETs). It has been shown on the example of cyanoethylated polyvinylalcohol (CEPVA), the high-k dielectric containing strong polar side groups, that the conditions during dielectric layer solidification can significantly affect the charge transport in the semiconductor layer. In contrast to the previous literature we attributed the reduced mobility to the broader distribution of the semiconductor density of states (DOS) due to a significant dipolar disorder in the dielectric layer. The combination of infrared (IR), solid-state nuclear magnetic resonance (NMR) and broadband dielectric (BDS) spectroscopy confirmed the presence of a rigid hydrogen bonds network in the CEPVA polymer. The formation of such network limits the dipolar disorder in the dielectric layer and leads to a significantly narrowed distribution of the density of states (DOS) and, hence, to the higher charge carrier mobility in the OFET active channel made of 6,13-bis(triisopropylsilylethynyl)pentacene. The low temperature drying process of CEPVA dielectric results in the decreased energy disorder of transport states in the adjacent semiconductor layer, which is then similar as in OFETs equipped with the much less polar poly(4-vinylphenol) (PVP). Breaking hydrogen bonds at temperatures around 50 °C results in the gradual disintegration of the stabilizing network and deterioration of the charge transport due to a broader distribution of DOS.

Keywords: OFET; charge carrier mobility; dipolar disorder; energy disorder; hydrogen bond; polar dielectric.