High-Yield Production of Lignin-Derived Functional Carbon Nanosheet for Dye Adsorption

Polymers (Basel). 2020 Apr 2;12(4):797. doi: 10.3390/polym12040797.

Abstract

In this article, we report the preparation of lignin-derived carbon nanosheet (L-CNS) by direct thermal treatment of lignin without activation operation and the functions of the L-CNS as an adsorbent for rhodamine dye. The L-CNSs are fabricated by freeze-drying (FD) methods of lignin followed by high-temperature carbonization. It is found that lower frozen temperature in FD or lower concentration of lignin aqueous solution renders L-CNSs' more porous morphology and higher specific surface area (SSA), allowing a promising application of the L-CNSs as an efficient adsorbent for organic pollutants. In particular, the alkaline hydroxide catalyst helps to increase the SSA of carbon products, leading to a further improved adsorption capacity. On the other hand, p-toluenesulfonic acid (TsOH) catalyzed pyrolysis, which dramatically increased the L-CNS product yield, and provided a high-yield approach for the production of pollutant absorbent.

Keywords: carbon nanosheet; carbonization; catalyst; freeze-drying; high yield; lignin.