Fermentative Quality and Animal Acceptability of Ensiled Persimmon Skin with Absorbents for Practical Use in Ruminant Feed

Animals (Basel). 2020 Apr 2;10(4):612. doi: 10.3390/ani10040612.

Abstract

Persimmon skin (PS), while representing an attractive feed source, requires an appropriate preservation procedure to increase its shelf life. We assessed the fermentation quality, in vitro ruminal incubation, and intake of persimmon skin silage ensiled with different dry absorbents. We prepared the silage on a table scale (Experiment 1) and evaluated five different mixtures: PS without an additive, PS plus Lactobacillus buchneri inoculum (LB), and PS plus LB plus each of the absorbents kraft pulp, wheat bran, or beet pulp. We opened the laboratory bags, kept at 25 °C, at 0, 14, 28, and 60 days for fermentation quality and chemical analysis (n = 3 for each measurement). Further, with an in vitro rumen simulated cultivation study (Experiment 2), we evaluated the fermentation pattern of PS with a mixture of two absorbents (kraft pulp and wheat bran) either raw (no fermentation) or ensiled (n = 4 for each treatment). Finally, we conducted an in vivo experiment using six dry ewes assigned based on their body weight to two experimental groups in a crossover design of two periods (Experiment 3). We fed a control group a 100% basal diet (tall fescue hay and concentrate mixture) and ensiled PS (PSS) group, a 20% dry matter substitution of tall fescue with PS silage mixed with kraft pulp as the sole absorbent. The results of Experiment 1 show, regardless of the absorbents used, the effluent volume of the lab bags was lower in absorbent-treated groups (p < 0.001). In Experiment 2, the condition of the PS with absorbents (raw or ensiled) did not affect the total gas production (p > 0.05), but we observed an increased propionate proportion in PSS with absorbents compared to basal diet (p = 0.019). The proportion of methane to the total gas in PSS group was considerably reduced compared with that in the other groups (p < 0.001). As we did this incubation study with a single run, a more detailed evaluation in the future would verify these observations. In the animal trial (Experiment 3), dry matter intake was similar between groups (p > 0.05), but ewes spent a shorter time eating in the PSS-fed group (p = 0.011). Here we present the practical use of PSS as part of ruminant feed in which dry absorbents prevented dry matter loss.

Keywords: Lactobacillus buchneri; absorbents; fruit byproducts; methane; palatability.