Multiple Auger decays of core-excited states in N2

J Chem Phys. 2020 Mar 31;152(12):124301. doi: 10.1063/1.5142587.

Abstract

Multi-electron coincidence measurements have been performed at the photon energies for the core-to-valence (1s → π*) and core-to-Rydberg (1s → 3sσ and 3pπ) resonant excitations in N2 in order to investigate the dynamics of multiple Auger-electron emissions from these core-excited states in detail. Peaks due to slow electrons from superexcited atomic fragments are observed in the decay processes by emission of two or three Auger electrons, indicating stepwise (cascade) multiple Auger decays that involve faster dissociations than electronic relaxations. Energy partitions between the emitted electrons enable us to reveal the detailed decay mechanisms for these processes. Branching ratios among the decays by emission of one, two, or three Auger electrons and those between the simultaneous (direct) and stepwise (cascade) processes have been determined for each of the core-excited states. Branching ratios of decay channels resulting in molecular or fragment ions have also been substantiated.