Ultrahigh finesse cavity-enhanced spectroscopy for accurate tests of quantum electrodynamics for molecules

Opt Lett. 2020 Apr 1;45(7):1603-1606. doi: 10.1364/OL.389268.

Abstract

We report the most accurate, to the best of our knowledge, measurement of the position of the weak quadrupole S(2) 2-0 line in $ {{\rm D}_2} $D2. The spectra were collected with a frequency-stabilized cavity ringdown spectrometer (FS-CRDS) with an ultrahigh finesse optical cavity ($ {\cal F} = 637 000 $F=637000) and operating in the frequency-agile, rapid scanning spectroscopy (FARS) mode. Despite working in the Doppler-limited regime, we reached 40 kHz of statistical uncertainty and 161 kHz of absolute accuracy, achieving the highest accuracy for homonuclear isotopologues of molecular hydrogen. The accuracy of our measurement corresponds to the fifth significant digit of the leading term in quantum electrodynamics (QED) correction. We observe $ 2.3\sigma $2.3σ discrepancy with the recent theoretical value.