Attention in visually typical and amblyopic children

J Vis. 2020 Mar 17;20(3):11. doi: 10.1167/jov.20.3.11.

Abstract

Amblyopia is a cortical visual disorder caused by unequal visual input to the brain from the two eyes during development. Amblyopes show reduced visual acuity and contrast sensitivity and abnormal binocularity, as well as more "global" perceptual losses, such as figure-ground segregation and global form integration. Currently, there is no consensus on the neural basis for these higher-order perceptual losses. One contributing factor could be that amblyopes have deficiencies in attention, such that the attentional processes that control the selection of information favor the better eye. Previous studies in amblyopic adults are conflicting as to whether attentional deficits exist. However, studies where intact attentional ability has been shown to exist were conducted in adults; it is possible that it was acquired through experience. To test this hypothesis, we studied attentional processing in amblyopic children. We examined covert endogenous attention using a classical spatial cueing paradigm in amblyopic and visually typical 5- to 10-year old children. We found that all children, like adults, independently of visual condition, benefited from attentional cueing: They performed significantly better on trials with an informative (valid) cue than with the uninformative (neutral) cue. Response latencies were also significantly shorter for the valid cue condition. No statistically significant difference was found between the performance of the amblyopic and the visually typical children or between dominant and nondominant eyes of all children. The results showed that covert spatial attention is intact in amblyopic and visually typical children and is therefore not likely to account for higher-order perceptual losses in amblyopic children.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Amblyopia / physiopathology*
  • Attention / physiology*
  • Child
  • Child, Preschool
  • Contrast Sensitivity
  • Cues
  • Female
  • Humans
  • Male
  • Spatial Processing / physiology*