Self-Supported FeP-CoMoP Hierarchical Nanostructures for Efficient Hydrogen Evolution

Chem Asian J. 2020 May 15;15(10):1590-1597. doi: 10.1002/asia.202000278. Epub 2020 Apr 14.

Abstract

Fabricating highly efficient electrocatalysts for electrochemical hydrogen generation is a top priority to relief the global energy crisis and environmental contamination. Herein, a rational synthetic strategy is developed for constructing well-defined FeP-CoMoP hierarchical nanostructures (HNSs). In general terms, the self-supported Co nanorods (NRs) are grown on conductive carbon cloth and directly serve as a self-sacrificing template. After solvothermal treatment, Co NRs are converted into well-ordered Co-Mo nanotubes (NTs). Subsequently, the small-sized Fe oxyhydroxide nanorods arrays are hydrothermally grown on the surface of Co-Mo NTs to form Fe-Co-Mo HNSs, which are then converted into FeP-CoMoP HNSs through a facile phosphorization treatment. FeP-CoMoP HNSs display high activity for hydrogen evolution reaction (HER) with an ultralow cathodic overpotential of 33 mV at 10 mA cm-2 and a Tafel slope of 51 mV dec-1 . Moreover, FeP-CoMoP HNSs also possess an excellent electrochemical durability in alkaline media. First-principles density functional theory (DFT) calculations demonstrate that the remarkable HER activitiy of FeP-CoMoP HNSs originates from the synergistic effect between FeP and CoMoP.

Keywords: density functional theory; hierarchical nanostructure; hydrogen evolution reaction; synergistic effect; transition metal phosphide.