Ground-based FTIR observation of hydrogen chloride (HCl) over Hefei, China, and comparisons with GEOS-Chem model data and other ground-based FTIR stations data

Opt Express. 2020 Mar 16;28(6):8041-8055. doi: 10.1364/OE.384377.

Abstract

In this study, the characterization of Hydrogen Chloride (HCl) seasonal variations and inter-annual linear trend are presented for the first time over the polluted region at Hefei (117°10'E, 31°54'N), China. The time series of HCl were retrieved by the mid-infrared (MIR) solar spectra recorded by the ground-based high-resolution Fourier transform infrared spectroscopy (FTIR) between July, 2015 and April, 2019. The magnitude of HCl reaches a peak in January (2.70 ± 0.16) × 1015 molecules*cm-2 and a minimum in September (2.27 ± 0.09) × 1015 molecules*cm-2. The four-year time series of HCl total column show a negative linear trend of (-1.83 ± 0.13) %. The FTIR data are compared with GEOS-Chem data in order to evaluate the performance of the GEOS-Chem model to simulate HCl. In general, total column FTIR data and GEOS-Chem model data are in a good agreement with a correlation coefficient of 0.82. GEOS-Chem model data present a good agreement with FTIR data in seasonal variation and inter-annul trend. The maximum differences occur in January and April with mean differences of 4%-6%. We also present HCl time series observed by 6 NDACC stations (Bremen, Toronto, Rikubetsu, Izana, Reunion.maido, Lauder) in low-middle-latitude sites of the northern and southern hemispheres and Hefei stations in order to investigate the seasonal and annual trends of HCl in low-middle-latitude sites. The HCl total column at the northern hemisphere stations reached the maximum in the late winter or early spring and the minimum in the early winter or late autumn. In general, the seasonal variations of HCl over Hefei is similar to that in other northern hemisphere mid-latitude FTIR stations.