Quantum renewal processes

Sci Rep. 2020 Mar 27;10(1):5592. doi: 10.1038/s41598-020-62260-z.

Abstract

We introduce a general construction of master equations with memory kernel whose solutions are given by completely positive trace-preserving maps. These dynamics going beyond the Lindblad paradigm are obtained with reference to classical renewal processes, so that they are termed quantum renewal processes. They can be described by means of semigroup dynamics interrupted by jumps, separated by independently distributed time intervals, following suitable waiting time distributions. In this framework, one can further introduce modified processes, in which the first few events follow different distributions. A crucial role, marking an important difference with respect to the classical case, is played by operator ordering. Indeed, for the same choice of basic quantum transformations, different quantum dynamics arise. In particular, for the case of modified processes, it is natural to consider the time inverted operator ordering, in which the last few events are distributed differently.