Expression of recombinant herpes simplex virus type 2 glycoprotein D by high-density cell culture of Spodoptera frugiperda

Biologia (Bratisl). 2012;67(2):405-410. doi: 10.2478/s11756-012-0002-4. Epub 2012 Feb 22.

Abstract

Herpes simplex virus type 2 (HSV-2) is the major cause of genital herpes in humans. The glycoprotein D of HSV-2 (gD2) is a promising subunit vaccine candidate for the treatment of genital herpes. The aim of the present study was to express a biologically active recombinant gD2 in eukaryotic baculovirus system in quantities sufficient for further studies. Human cDNA encoding a gD2 protein with 393 amino acids was subcloned into the pFastBac HTb vector and the recombinant protein was expressed in Spodoptera frugiperda (Sf9) cells by high-density cell culture. In a stirred bioreactor, the key limiting factors including glucose concentration, glutamine concentration and dissolved oxygen (DO) were optimized for high-density cell growth. The Sf9 cell density could reach 9.6×106 cells/mL and the yield of recombinant gD2 protein was up to 192 mg/L in cell culture under the optimal conditions of 15 mM glucose, 0.4 g/L glutamine and 40% DO. Production of significant amounts of pure, full-length gD2 opened up the possibility to investigate novel functions of gD2. Moreover, the purified recombinant gD2 protein revealed a partial prophylactic immune function in genital herpes of guinea pigs infected with HSV-2.

Keywords: Sf9 cells; glycoprotein D; guinea pig; herpes simplex virus type 2; high-density cell culture.