The electronic band structure of quasi-one-dimensional van der Waals semiconductors: the effective hole mass of ZrS3 compared to TiS3

J Phys Condens Matter. 2020 Jul 8;32(29):29LT01. doi: 10.1088/1361-648X/ab832c.

Abstract

The band structure of the quasi-one-dimensional transition metal trichalcogenide ZrS3(001) was investigated using nanospot angle resolved photoemission spectroscopy (nanoARPES) and shown to have many similarities with the band structure of TiS3(001). We find that ZrS3, like TiS3, is strongly n-type with the top of the valence band ∼1.9 eV below the Fermi level, at the center of the surface Brillouin zone. The nanoARPES spectra indicate that the top of the valence band of the ZrS3(001) is located at [Formula: see text]. The band structure of both TiS3 and ZrS3 exhibit strong in-plane anisotropy, which results in a larger hole effective mass along the quasi-one-dimensional chains than perpendicular to them.