New Unsymmetrical Bisacridine Derivatives Noncovalently Attached to Quaternary Quantum Dots Improve Cancer Therapy by Enhancing Cytotoxicity toward Cancer Cells and Protecting Normal Cells

ACS Appl Mater Interfaces. 2020 Apr 15;12(15):17276-17289. doi: 10.1021/acsami.0c02621. Epub 2020 Apr 1.

Abstract

The use of nanoparticles for the controlled drug delivery to cells has emerged as a good alternative to traditional systemic delivery. Quantum dots (QDs) offer potentially invaluable societal benefits such as drug targeting and in vivo biomedical imaging. In contrast, QDs may also pose risks to human health and the environment under certain conditions. Here, we demonstrated that a unique combination of nanocrystals core components (Ag-In-Zn-S) would eliminate the toxicity problem and increase their biomedical applications. The alloyed quaternary nanocrystals Ag-In-Zn-S (QDgreen, Ag1.0In1.2Zn5.6S9.4; QDred, Ag1.0In1.0Zn1.0S3.5) were used to transport new unsymmetrical bisacridine derivatives (UAs, C-2028 and C-2045) into lung H460 and colon HCT116 cancer cells for improving the cytotoxic and antitumor action of these compounds. UAs were coupled with QD through physical adsorption. The obtained results clearly indicate that the synthesized nanoconjugates exhibited higher cytotoxic activity than unbound compounds, especially toward lung H460 cancer cells. Importantly, unsymmetrical bisacridines noncovalently attached to QD strongly protect normal cells from the drug action. It is worth pointing out that QDgreen or QDred without UAs did not influence the growth of cancer and normal cells, which is consistent with in vivo results. In noncellular systems, at pH 5.5 and 4.0, which relates to the conditions of endosomes and lysosomes, the UAs were released from QD-UAs nanoconjugates. An increase of total lysosomes content was observed in H460 cells treated with QDs-UAs which can affect the release of the UAs from the conjugates. Moreover, confocal laser scanning microscopy analyses revealed that QD-UAs nanoconjugates enter H460 cells more efficiently than to HCT116 and normal cells, which may be the reason for their higher cytotoxicity against lung cancer. Summarizing, the noncovalent attachment of UAs to QDs increases the therapeutic efficiency of UAs by improving cytotoxicity toward lung H460 cancer cells and having protecting effects on normal cells.

Keywords: Ag-In-Zn-S nanocrystals; cellular uptake; cytotoxic activity; drug-carrier degradation pathway; in vivo antitumor efficacy; lung and colon cancer cells; pH-dependent release; unsymmetrical bisacridine derivatives.

MeSH terms

  • Acridines / chemistry*
  • Acridines / metabolism
  • Animals
  • Antineoplastic Agents / chemistry*
  • Antineoplastic Agents / metabolism
  • Antineoplastic Agents / pharmacology
  • Antineoplastic Agents / therapeutic use
  • Cell Line, Tumor
  • Cell Survival / drug effects
  • Humans
  • Hydrogen-Ion Concentration
  • Kinetics
  • Lung Neoplasms / drug therapy
  • Mice
  • Mice, Nude
  • Quantum Dots / chemistry*
  • Silver / chemistry
  • Sulfides / chemistry
  • Zinc Compounds / chemistry

Substances

  • Acridines
  • Antineoplastic Agents
  • Sulfides
  • Zinc Compounds
  • Silver
  • zinc sulfide