Multi-Operator Minimum Variance Adaptive Beamforming Algorithms Accelerated With GPU

IEEE Trans Med Imaging. 2020 Sep;39(9):2941-2953. doi: 10.1109/TMI.2020.2982239. Epub 2020 Mar 20.

Abstract

The goal of this work is to design high-resolution, high-contrast and robust MV adaptive beamforming algorithms, which are also implemented in real-time frame rate. Multi-operator optimization is introduced into MV adaptive beamforming in this work to propose a multi-operator MV adaptive beamforming algorithmic optimization framework. Based on the proposed algorithmic optimization framework, the algorithm optimization can be either conducted by activating a single optimization operator, or conducted by activating multiple optimization operators. The multi-operator MV (MOMV) adaptive beamforming algorithms are then derived from this framework. Moreover, in order to promote the real-time imaging capability of MOMV beamforming, a GPU-based parallel acceleration framework is proposed along with the algorithmic optimization framework by exploring the image-level coarse-grained parallelization and pixel-level fine-grained parallelization. GPU computing resource allocation strategy and memory access strategy are both explored to better design the acceleration framework. Comprehensive quantitative simulation evaluations and qualitative in vivo experiments of imaging performance are studied, and the results demonstrate that the proposed MOMV adaptive beamforming algorithms significantly improve the imaging performance as compared with other MV beamforming algorithms, which have high resolution, high contrast, good robustness, and real-time imaging capability with thousands of acceleration speedup. Furthermore, the MOMV beamforming algorithm without eigen-decomposition and projection optimization operator achieves much higher beamforming frame rate with little downgrade of image quality as compared with the MOMV beamforming algorithm with all optimization operators.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Algorithms*
  • Computer Simulation
  • Image Processing, Computer-Assisted*
  • Phantoms, Imaging