Dynamic Interfacial Trapping of Janus Nanorod Aggregates

Langmuir. 2020 Apr 21;36(15):4184-4193. doi: 10.1021/acs.langmuir.9b03604. Epub 2020 Apr 6.

Abstract

Taking advantage of both shape and chemical anisotropy on the same nanoparticle offers rich self-assembly possibilities for nanotechnology. Through dissipative particle dynamics calculations, in the present work, the directed assembly of Janus nanorod aggregates and their capability to assemble into metastable novel structures at an interfacial level have been assessed. Symmetric Janus rods become kinetically trapped and exhibit either parallel or antiparallel alignment with respect to their long axis (different compositions). This depends on several factors that have been mapped herein and that can be precisely tuned: Flory-Huggins interaction parameter χ between polymer phases; concentration; shear rate; and even aggregate shape. Ultimately, two different aggregate structures result from rod tumbling that are not observed under quiescent conditions: monolayer-like aggregates exhibiting trapped rods with antiparallel configuration; and stacked nanorod arrays similar to superlattice sheets. These different structures can be controlled by the likelihood with which tumbling Janus rods encounter other aggregate portions showing parallel alignment. Hence, the present study offers fundamental insight into relevant parameters that govern the directed assembly of Janus nanoparticles at an interfacial level. Novel applications may potentially derive from the resulting aggregate structures, such as peculiar displays and sensors.