Performance and functional microbial communities of denitrification process of a novel MFC-granular sludge coupling system

Bioresour Technol. 2020 Jun:306:123173. doi: 10.1016/j.biortech.2020.123173. Epub 2020 Mar 10.

Abstract

The performance, microbial communities and functional gene metabolism of the novel microbial fuel cell (MFC)-granular sludge coupling system was investigated. The results showed that COD and nitrogen removal can be up to 1.3-2.0 kg COD/L, 20-30 mg NO2--N/L, and 60-70 mg NO3--N/L, respectively. Proteobacteria, Chloroflexi, and Firmicutes were the dominant bacterial phyla, and the denitrification process was mainly consisted of the dominant denitrifying bacteria: Thauera (26.21%) and Pseudomonas (14.79%) in the first compartment, combining with denitrifying anaerobic methane oxidation bacteria: NC10 phylum of 0.072% (the first compartment) and 0.089% (the fourth compartment), Candidatus Methylomirabilis oxyfera of 0.044% (the first compartment) and 0.048% (the fourth compartment). According to functional gene classification for Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis, metabolism was the main cluster for the whole sequence in the KEGG (7.17-11.41%), indicating that the dominant metabolic pathway played an important role in the degradation of pollutants.

Keywords: DAMO; Denitrification process; Dissolved methane; Electron transport system; MFC-granular sludge coupling system; Microbial community.